

2015 Annual Merit Review

High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks

YURI HOVANSKI

Pacific Northwest National Laboratory

June 12, 2015

Project Overview

Proudly Operated by Battelle Since 1965

Project Timeline

> Start: FY2015

Finish: FY2017

▶ 15% complete

Budget

- Total project funding
 - DOE \$1.2 M
 - Industrial cost share \$1.2M
- FY15 Funding \$400k (received)
- FY16 Funding \$400k
- FY17 Funding \$400k

Technology Gaps/Barriers

- Capacity to rapidly join dissimilar alloy Al sheet is not developed for high volume production.
- Scientific understanding to enable thermal stability of work-hardenable and precipitation hardenable alloys during welding is lacking
- Supply chain for curvilinear geometries in dissimilar thickness and alloy combinations is non existent.

Partners

- Automotive OEM
 - GM
- Tier I Supplier
 - TWB Company LLC
- Material Provider
 - Alcoa

Relevance: Project Motivation

- EERE–Vehicle Technology Goal:
 - By 2015, demonstrate a costeffective 50% weight reduction in passenger-vehicles compared to 2002 model
- VTO Challenges and Barriers:
 - Cost, Manufacturability, Performance, Predictive modeling tools, tooling and prototyping, joining, inadequate supply base
- Project designed to address each of these issues as related to the production of Al-TWBs
 - Increase supplier base
 - Develop and validate predictive modeling tools
 - Develop new joining technique with lower cost and simplified assembly

Front Door Inner Example	Steel -TB 1.4 / .7 mm	Al – Assembly	AL – TB 2.0 / 1.1 mm
Gross Weight	14.5 kg	9.0 kg	7.4 kg
Net Weight	11.6 kg	6.8 kg	6.6 kg
Material cost (\$1.25/kg vs \$4.50/kg)	\$18.13	\$40.50	\$33.30
Blanking & Welding	\$3.12	\$.70	\$5.85
Stamping	\$2.00	\$3.60	\$2.80
Assembly	\$0	\$3.00	\$0
Total Cost	\$23.25	\$47.80	\$41.95
Net Weight Savings*	n/a	4.8 kg	5.0 kg
Cost / kg saved**	n/a	\$5.11	\$3.74

Relevance: Goals and Objectives

- Enable more wide-spread use of mass-saving aluminum alloys.
- Develop joining technology needed for high speed fabrication of high strength, dissimilar alloy Al-TWBs in linear and curvilinear geometries.
- Introduce curvilinear Al TWBs into the high-volume automotive supply chain.

Relevance: Project Milestones

Proudly Operated by Battelle Since 1965

DOE Significance

Fundamental Material Science

Predictive Engineering

Technology Transfer

Month/Year	Milestone or Go/No-Go Decision
March 2015 Complete	Establish Predictive Formability Establish FE modeling for predicting LDH height in welded sheet using Barlat coefficients
June 2015 Complete	Characterize Influence of Heat Input Characterize HAZ relationships in 5x, 6x, and 7x aluminum alloys as a function of welding speed
Sept 2015 Progress Milestone	Disseminate Information Submit a publication on relationships of high speed FSW parameters on the magnitude & location of HAZ in welded blanks
Sept 2016 Go/No-Go Decision Gate	High Speed Dissimilar Alloy Demonstrate high-speed, friction-stir welded dissimilar alloy welded blanks between 5x & 6x alloys in linear and curvilinear geometries

Technical Approach

Task 1: Relating Weld Parameters & Material Properties

- Task 1.1. Base-metal sheet characterization
- Task 1.2. FSW material characterization & properties
- Task 1.3. Heat affected zone characterization and relationships
- Task 1.4. Effects of sheet coatings on properties of weld and HAZ
- Task 1.5. FSW characterization & properties of dissimilar alloy joints

Task 2: Dissimilar Alloy Friction Stir Welding Development

- Task 2.1. Dissimilar alloy weld development of AA5xxx and AA6xxx
 Decision gate
- Task 2.2. Dissimilar alloy weld development of precipitation strengthened alloys
- Task 2.3. Dissimilar alloy weld development of 5x and 6x alloys to 7x
- Task 2.4. Curvilinear high speed FSW development

Technical Approach (con't)

- Task 3: Production Readiness and Deployability
 - Task 3.1. Repeatability of high speed dissimilar alloy FSW
 - Task 3.2. Repeatability of high speed curvilinear FSW
 - Task 3.3. Tool durability
- Task 4: Weld Formability Modeling and Validation
 - Task 4.1. Developing Barlat Coefficients
 - Task 4.2. Simulating formability of dissimilar thickness Al TWBs
 - Task 4.3. Simulating formability of dissimilar alloy & thickness Al TWBs

Split Predicted

No Split, Actual

Technical Accomplishments: Thermal Effects on Aluminum Sheet

- Thermal monitoring during FSW from 1m/min to 6m/min in various alloys
 - 7075-T6, 6022-T4, 5182-0
- Goal: lower peak temperatures and shorter durations at temperature

Technical Accomplishments: Temperature Effects on HAZ (2015 milestone)

- Unlike fusion welding, Solid-state FSW can change thermal input to materials
 - Especially important to precipitation strengthened alloys
 - Microhardness maps from 2mm AA6022-T4, as welded shown below
 - Base metal hardness ~80

Technical Accomplishments: Temperature Effects on HAZ (2015 milestone)

Proudly Operated by Battelle Since 1965

Further effects of temperature on the weld nugget microstructure

Technical Accomplishments: Temperature Effects on HAZ (2015 milestone)

- Pronounced effect of high-strength alloys, as-welded 2 mm 7075-T6 shown below:
 - With a 12-mm diameter tool the transition from thin to thick sheets is at around 6-mm off of center
 - Need to avoid all the weakest segments aligning to achieve maximum formability

Technical Accomplishments: Weld Formability Modeling (FY15 Milestone)

- Introducing Barlat 2000 Coefficients to account for anisotropy and strain sensitivity
 - 8 anisotropy parameters for AA5182 -O

Technical Accomplishments: Weld Formability Modeling (FY15 Milestone)

- Evaluating the influence of model complexities at the weld
 - Step interface at the weld is the current practice for TWBs
 - Less geometric complexity and less intensive calculation

Technical Accomplishments: Curvilinear weld panels

- Weld parameters from previous high speed FSW work in dissimilar thickness AA5182-O applied
 - 2 mm to 1 mm thicknesses
 - 1 corner with 50 mm radius
 - 2 corners with 60 mm radius
- Beavertail die designed for linear weld seam
 - Didn't constrain edge buckling
 - Complete 55 mm die stroke

Pin with 3 Flats
Double scrolled shoulder,
Shoulder to pin ratio (S/P) =3

Responses to Previous Year Comments

This is a new project that was not reviewed last year

Collaboration and Coordination

- University Collaborators
 - Washington State University
 - Characterization and analysis of process on properties
- Private Collaborations (complete automotive supply chain)
 - General Motors
 - Determine Barlat coefficients for weld material, product specific formability modeling, and market relevance, component stamping
 - High speed thermal evaluation
 - TWB Company, LLC.
 - High speed linear and curvilinear blank production, repeatability evaluations, tool durability during high volume production
 - Alcoa
 - Material provider, high temperature material properties, Barlat, formability

Remaining Challenges and Barriers

- Balancing differences in high temperature flow stresses of dissimilar alloys during high-speed FSW -
 - Will be addressed in the following tasks:
 - Task 1.5 charactering joint properties & material flow of dissimilar alloys
 - Task 2.1 combining work hardenable & precipitation hardenable alloys
 - Task 2.3 combining 7xxx series alloys with others
- Although linear deployment is underway, high-speed curvilinear deployment needs to be fully enabled for automotive suppliers
 - Will be addressed with Task 2.4
- Production Readiness and Deployability of dissimilar alloy blanks
 - Addressed in Task 3 addressing repeatability at the suppliers facilities
- Predictive engineering tools need to accommodate a combination of dissimilar alloys and dissimilar thicknesses
 - Addressed specifically in Task 4 combined effort from PNNL, GM & Alcoa

Proposed Future Work (planned)

- Summer 2015: Complete investigation of weld parameters on HAZ including dissemination in archival publications (FY15 milestones)
 - Determine the ideal parameter ranges to minimize effects of heat in precipitation-strengthened alloys
- Fall 2015: Curvilinear weld development (FY16 milestone)
 - Demonstration of curvilinear welding on supplier's machine
 - Evaluation of properties and post-weld formability
- Spring 2016: Validate predictive modeling tools for dissimilar thicknesses (FY16 milestone)
 - Introducing discretized properties for base metals and weld metals.
- Summer 2016: Demonstrate high-strength, dissimilar alloy Al TWBs, including weld stability, quality and formability (FY16 Decision Gate)
 - Develop weld parameters to support joining 5xxx and 6xxx alloys using high-speed FSW
 - Demonstrate weld quality with acceptable surface roughness, strength and post-weld formability

FY15 Project Summary

- Initiated project to overcome the technical challenges associated with high volume production of high-strength, dissimilar alloy Al TWBs
 - Complete automotive supply chain engaged in overcoming technical challenges and moving to complete deployment
- Evaluated the influence of weld parameters on the HAZ of Al sheet
 - Demonstrated weldability to 6 m/min in each alloy class (5x, 6x, 7x)
 - Quantified the relationships between weld parameters and the size and magnitude of the HAZ
- Demonstrated similar alloy, dissimilar thickness curvilinear capability
- Upgraded predictive modeling tools using Barlat 2000 coefficients demonstrating more accurate fit than with stress-strain behavior alone.
 - Prepared for future inputs from weld materials, allowing for further increases in overall predictive accuracy.

Technical Back-Up Slides

Formability Modeling – LDH Foundation

- Formability Screening of dissimilar thickness welded blanks
 - Height & load at failure measured
 - Predicted failure was outside weld in the thin sheet for 2-mm to 1-mm joints
 - Failure related to geometric discontinuity rather than the weld

Establishing Failure Criteria Probabilistic Formability Limits

- 30 sets of tensile coupons prepared to evaluate available strain in dissimilar thickness welded aluminum blanks
 - Transverse & longitudinal
- Speckle pattern interferometry
 - Strain evaluation
 - Determines maximum safe strain available to each specimen
 - Max e_{vv} and corresponding e_{xx} are recorded
 - Lagrangian strain conditions
- Probabilistic formability limit established for safe strain in the production of AI TWBs

Numerically Predicted Post-Weld Formability

- Simulation capability being expanded to correct current numerical analysis
- LDH predictions show capability of trending across various sheet thickness ratios
- Modeling dome heights account for dissimilar thicknesses, but needs to be expanded for alloys and detailed part geometries

Simulations Schedule

- 2:1 thickness ratio with step and taper
 - Isotropic case with only base material (Al 5182-O)
 - Barlat 2000 Constitutive model
 - Limiting Strain set to 18%
- ► Five different thickness ratios with taper

Case	Thick Side (mm)	Thin Side (mm)	Ratio
а	2.0	0.6	3.33:1
b	2.0	0.8	2.5:1
С	2.0	1	2:1
d	2.0	1.2	1.67:1
е	2.0	1.4	1.43:1